
Chapter 6

Role of Mycorrhizal Symbioses in Phosphorus

Cycling

Jan Jansa, Roger Finlay, Håkan Wallander, F. Andrew Smith,

and Sally E. Smith

6.1 Introduction

6.1.1 Mycorrhizal Symbiosis: Definition, Partners, Diversity

Mycorrhizal symbioses are associations of plant roots or rhizoids with fungi that, at

least under some conditions, are beneficial to both partners. Arbuscular mycorrhizal

(AM) symbiosis was established at the dawn of terrestrial plant evolution, some

400–500 million years ago, between ancestral vascular plants (Cooksonia, Rhynia,
Aglaophyton) and fungi belonging to the phylum Glomeromycota (Pirozynski and

Dalpé 1989; Redecker et al. 2000; Sch€ußler et al. 2001). AM symbiosis has been

identified in thousands of plant species among all major plant lineages including

bryophytes, ferns, gymno- and angiosperms (Brundrett 2009; Wang and Qiu 2006).

It is the most widespread type of mycorrhizal symbiosis with respect to the number

of plant species it involves (Trappe 1987; Wang and Qiu 2006) and can be found in

virtually all ecosystems on Earth. Despite its broad host range, the fungal diversity

is limited to a few hundred species (Redecker and Raab 2006), inferring that the
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association is particularly species-unspecific. Quantitative preferences for root

colonization have, however, been repeatedly found between some plant and the

fungal species (Jansa et al. 2002; Öpik et al. 2009; Sýkorová et al. 2007; Vanden-

koornhuyse et al. 2003) and it is possible that a broader specificity between some

fungal and plant genotypes does exist. This remains difficult to test experimentally,

given the current limitations in the understanding of AM fungal genomic organiza-

tion and molecular diversity (Croll and Sanders 2009; Martin et al. 2008).

Evolutionarily more recent types of mycorrhizal associations include ectomycor-

rhizas (ECM), ericoid mycorrhizas (ERM), and orchid mycorrhizas (Cairney 2000).

These types are restricted to narrower groups of plant taxa, and involve fungi from

the phyla Basidiomycota, Ascomycota, and Zygomycota. Some of these fungi form

quite species-specific associations (e.g., Cortinarius and Suillus associate with

rather a narrow range of plant species, such as Pseudotsuga, Betula, Larix, and
Pinus), whereas others (e.g., Cenococcum spp.) may colonize roots of a broad range

of plant species (Bruns et al. 2002; Smith and Read 2008; Tedersoo et al. 2008). A

few plant species (such as eucalyptuses, willows, and alders) have the capacity to

interact with both AM and ECM fungi. This can give rise to root systems simulta-

neously colonized by mycorrhizal fungi belonging to different types (Adams et al.

2006; van der Heijden and Vosátka 1999). The different types of mycorrhizal

symbioses have also shown predominance for different plant biomes (Read and

Perez-Moreno 2003; Smith and Read 2008 and references therein). Plants in polar

regions and at high altitudes are usually not mycorrhizal, but often have roots

extensively colonized by dark septate fungal endophytes with unclear function

(Mandyam and Jumpponen 2005; Newsham et al. 2009). By definition, endophytes

live solely within the plant tissues, and often fulfill their entire lifecycle including

reproduction inside the plant body (Faeth and Fagan 2002). Mycorrhizal fungi, in

contrast, inhabit and interconnect two kinds of environment, namely the inner

volume of the plant roots and the surrounding soil (Jansa and Gryndler 2010). The

status of many root-inhabiting fungi is unclear because it is inherently difficult to

demonstrate absence of hyphal growth outside the roots. Heathlands (here we refer

to heathlands at both high latitudes and altitudes as well as nutrient-limited and

wildfire-prone ecosystems in Mediterranean climates, known as fynbos, chaparral,

maquis or matorral in different parts of the world) are usually dominated by ERM,

and Taiga (coniferous boreal forest) is dominated by the ECM (Read et al. 2004;

Thormann et al. 1999). Most trees in deciduous forests establish ECM symbiosis,

although the understorey plants are primarily colonized by AM fungi (Helgason

et al. 2002). Most plants in grasslands and in tropical forests also establish AM

symbiosis (Castillo et al. 2006; Treseder and Cross 2006). Plants inhabiting highly

weathered and severely phosphorus (P)-impoverished soils (as inWestern Australia)

are often devoid of mycorrhizas; these plants have other adaptations, such as cluster

roots, that fulfill their P requirements (Lambers et al. 2008). Under field conditions,

the root system of a single plant is usually colonized by different mycorrhizal fungal

species simultaneously (Burke et al. 2005; Jansa et al. 2003b; Merryweather and

Fitter 1998; Miller et al. 1991). This diversity could have important consequences
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for acquisition of nutrients as well as for maximizing symbiotic benefits for the

plants (Baxter and Dighton 2001; Jansa et al. 2008; Koide 2000).

6.1.2 Mycorrhizal Functioning

The unequivocal importance of mycorrhizal symbioses to plants (and soils) is

inherently difficult to demonstrate because the mycorrhizal condition is normal,

and absence is rare under natural settings (Merryweather and Fitter 1995). Estab-

lishing non-mycorrhizal control treatments in pot experiments or in the field is a

great challenge and may potentially introduce experimental artefacts (Jones and

Smith 2004; Kahiluoto et al. 2000a). Soil sterilization by steaming or autoclaving,

for example, changes chemical soil properties (Serrasolses et al. 2008). It also

eliminates other soil organisms, introducing further confounding effects. While

these artefacts should always be considered in the interpretation of experimental

results, there have been numerous independent studies comparing the performance

of mycorrhizal and non-mycorrhizal plants under a range of environmental condi-

tions. These experiments have collectively demonstrated that plants benefit from

their mycorrhizal associations through improved nutrient acquisition, mainly of

elements with low mobility in the soil (e.g., P, zinc, and copper), and through

greater resistance to drought and biotic stresses (Clark and Zeto 2000; Jansa et al.

2003a; Marschner 1995; Redon et al. 2009; Sikes et al. 2009).

The benefits of mycorrhizal colonization to the plants result from expansion and/

or complementation of the root function. Mycorrhizal fungi colonize two environ-

ments: the inner root volume (sometimes extending to the hyphal sheath on the root

surface) and the surrounding soil, thus directly connecting the root system with a

greater soil volume. By increasing soil contact, the plants are able to acquire

resources from zones lying far beyond the direct reach of the roots and the root

hairs. This effect is not trivial because the hyphae of some AM fungi can extend

many centimeters away from the root surface, unlike root hairs, which only extend a

few millimeters (Jakobsen et al. 1992; Jansa et al. 2003a, 2005). ECM fungal

mycelium can bridge even greater distances, particularly if the fungi form thick

rhizomorphs (Allen et al. 2003). P transport through the ECM hyphae over distances

up to 40 cm has been documented (Finlay and Read 1986; Timonen et al. 1996). In

contrast, some mycorrhizal fungi establish very dense mycelial networks in the

vicinity of the roots, growing only a few millimeters from their host (Smith et al.

2004). These mycelial networks significantly expand the capacity of the plant to

acquire mineral nutrients from the soil. In addition, in the case of ECM fungi, these

mycelial networks also play an important role in acquisition of water by the plants

from the soil (Allen 2007; George and Marschner 1996). Root colonization by

mycorrhizal fungi and their mycelial networks may also be important for interac-

tions between plants and soil-borne pathogens. This is due to (1) changes in plant

nutritional status upon mycorrhiza development, (2) direct competition for plant

carbohydrates between the mycorrhizal fungi and the pathogens, and/or (3) changes
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in the activity and composition of the microbial communities in the rhizosphere

(Fitter 2005; Graham 2001; Newsham et al. 1995; Toljander et al. 2007).

Many ERM and ECM fungi are also thought to be involved in mineralization of

organic nutrients (Bueé et al. 2007; Finlay 2008; Tibbett and Sanders 2002) and

bioweathering of recalcitrant inorganic nutrients from carbonates, micas, and

apatites (Blum et al. 2002; Wallander 2000). It appears, however, that even in

some of the well-documented case studies, other soil microorganisms (particularly

the prokaryotes) might have played important roles in the release of nutrients from

minerals or organic compounds. Therefore, the contribution of mycorrhizal fungi to

these processes remains, in most cases, poorly quantified (Finlay 2008; Koele et al.

2009). Evidence for direct involvement of AM fungi in mineralization of significant

amounts of organic P is still inconsistent. In particular, the role of other soil

microorganisms associated with the mycorrhizal mycelium, which might be very

important under nonsterile soil conditions, is not properly understood (Finlay 2008;

Joner and Jakobsen 1995; Joner and Johansen 2000; Koide and Kabir 2000;

Tarafdar and Marschner 1994; Toljander et al. 2006). The presence of mycorrhizal

fungi also significantly modifies soil conditions in the rooting zone (aggregation,

wettability, biological activity), modulates intra- and interspecific competition

within the plant community, and affects soil microbial communities (Barea 2000;

Facelli et al. 1999; Johansson et al. 2004; Rillig and Mummey 2006).

Mycorrhizal fungi are invariably heterotrophic organisms, and they mostly

derive the organic carbon needed for their growth, respiration, and biological

maintenance directly from their host plants in the form of recently fixed photo-

synthates. Some of the fungi (especially those forming ECM and ERM associa-

tions) are currently considered capable of limited saprophytic growth (Azcón-

Aguilar and Barea 1995; Gibson and Mitchell 2004; Koide et al. 2008; Zeller

et al. 2008), though under natural conditions its widespread realization has recently

been questioned (Baldrian 2009; Taylor and Alexander 2005). The dependence of

the fungi on the host plant for organic carbon can, depending on environmental

conditions (e.g., availability of soil P, availability of light and CO2 to the plants,

plant density, and possibly other factors), cause the association to vary from highly

beneficial to apparently parasitic (Johnson et al. 1997; Schroeder and Janos 2004;

Smith and Smith 1996; West et al. 1993; Whitbeck 2001). For example, under very

low soil P availability (<0.2 mg P kg�1, extractable with 0.5 M NaHCO3) caused

either by low total P levels or high P sorption in highly weathered soils, mycorrhizal

symbiosis may be less beneficial in terms of net P acquisition than if small amounts

of P were added to the soil (Bolan 1991; Bolan et al. 1983). Therefore, under very

low soil P availability, plants specialized in modes of P mobilization and uptake

other than mycorrhizal symbiosis (e.g., those forming cluster roots) can dominate

the plant communities (Lambers et al. 2008). In contrast, under conditions of very

high soil P availability (>50 mg kg�1, extractable with 0.5 M NaHCO3), such as

following application of high rates of water-soluble P-fertilizers, the plant can gain

access to enough P with its root system, resulting in little or no net demand for

mycorrhizal P uptake (Kahiluoto et al. 2000b; Sorensen et al. 2003). In such

situations, the extent of mycorrhizal development in roots is often reduced (Bolan
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et al. 1984; Jansa et al. 2009; Youpensuk et al. 2008). In addition, depending on the

plant species and soil and climatic conditions, the association with AM fungi could

have negative effects on plant growth (Jifon et al. 2002; Morgan et al. 2005; Ryan

and Graham 2002; Kahiluoto et al. 2000b). Under conditions where P availability

limits plant growth (NaHCO3-extractable P levels typically between 5 and 20 mg

kg�1), mineral nutrient acquisition benefits conferred to the plants by the AM fungi

will usually far outweigh the costs of carbon supply to the fungus and will result in a

net growth benefit to the plant (Jakobsen 1995; Li et al. 2005; Morgan et al. 2005;

Ortas et al. 2002). These studies indicate that the benefits to the plants of association

with AM fungi across a range of environmental conditions (Fig. 6.1) are best

described by a bell-shaped (or unimodal) response curve (Bolan et al. 1984;

Gange and Ayres 1999; Picone 2002). Even so, plants may benefit from mycorrhi-

zal symbiosis even though the growth and/or nutritional benefits (such as net P

uptake) may not be apparent, and special techniques such as isotopic labeling are

necessary to demonstrate mycorrhizal function in these cases (Fitter 2005; Grace

et al. 2009; Smith et al. 2004, 2009).

Although negative effects of some ECM fungi on host plant growth have been

occasionally reported (Burgess et al. 1993; Corrêa et al. 2008), the great majority of

Fig. 6.1 Conceptual model of whole-plant effects of the interactions between a plant, mycorrhizal

fungi, and the environment. This scheme delineates interdependencies between mycorrhizal costs

and benefits, resulting in a continuum of outcomes, ranging from highly beneficial to potentially

detrimental effects. This scheme is based mainly on the evidence gathered for arbuscular mycor-

rhizas, but also appears to be generally applicable to ectomycorrhizas. Processes in other mycor-

rhizal types (especially orchid mycorrhizas and mycorrhizas of achlorophylous plants) may follow

different trajectories. M+ mycorrhizal plant, NM non-mycorrhizal plant
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studies on both ECM and ERM associations report growth benefits to the host plants

upon colonization of the roots by the symbiotic fungi (Choi et al. 2005; Diedhiou

et al. 2005; Finlay et al. 1992; Jansa and Vosátka 2000). The extent of root coloniza-

tion by the different fungi and the magnitude of benefits, however, depend on a

broader environmental context and not only on the P availability (Hoeksema et al.

2010). Additional factors that determine the extent of root colonization and mycor-

rhizal benefits are: soil nitrogen (N) levels, seed size and nutrient reserves contained

in the seed, plant age and growth rate, and the identity of both plant and fungal species

(Corrêa et al. 2006; Duponnois et al. 2008; Egerton-Warburton and Allen 2001).

6.2 Different Forms of P in the Soil and Their Accessibility

to Mycorrhizas

6.2.1 Forms of P

Phosphorus is present in different forms in the soil. Inorganic forms (crystalline

apatites; amorphous phosphates of calcium, potassium, iron and aluminum, and

other phosphates; inorganic polyphosphate; and orthophosphate) differ greatly in

their solubility in water and in their chemical reactivity (Dou et al. 2009; Holford

1997). P is also a component of an array of organic compounds present in the soil,

such as nucleic acids, phospholipids, inositol phosphates, and many metabolic

intermediates (see also Doolette and Smernik 2011; B€unemann et al. 2011). In

contrast to the diversity of P forms present in the soil, the only form taken up in

significant amounts across the plasmalemma of both the plant and mycorrhizal

fungal cells is orthophosphate (Pi), preferentially as H2PO4
� ions (Rausch and

Bucher 2002; Smith 2002). Although various organic P forms have been reported

as potentially utilizable by some microorganisms, it appears that their enzymatic

cleavage to Pi actually occurs before the cross-membrane uptake, in the close

vicinity of the microbial cells (Heath 2005). Therefore, Pi in the soil solution close

to the plant and/or fungal cells plays a pivotal role in the uptake of P by the plants,

both via the direct and the mycorrhizal pathways (Smith 2002; Smith et al. 2004).

Direct P uptake pathway refers to acquisition of Pi by the plants from the soil solution

through rhizodermis cells or root hairs. Mycorrhizal P uptake pathway refers to

acquisition of P from the soil solution by mycorrhizal hyphae, translocation of P

throught the extraradical mycelium, release of P from themycorrhizal hyphae within

the roots, and uptake of this released P by the root cells (usually in the cortical layer).

6.2.2 Kinetics of P Acquisition by Hyphae

Uptake of P from the soil solution to the cells (either of plant roots or mycorrhizal

fungal hyphae) is mediated by Pi transporters (Rausch and Bucher 2002; Smith

2002; Tatry et al. 2009). These transporters are large proteins with several
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transmembrane domains and are responsible for the proton or sodium symport of

phosphate molecules across the membrane and against a steep electrochemical

gradient (Karandashov and Bucher 2005; Smith 2002). These proteins have been

most studied in AM fungi, but recently, two Pi transporters from ECM fungus

Hebeloma cylindrosporum have also been characterized (Tatry et al. 2009). The

first mycorrhizal Pi transporter was identified from cDNA libraries of Medicago
truncatula roots colonized by Glomus versiforme, using hybridization with a probe

derived from a yeast Pi transporter (Harrison and van Buuren 1995). Further

experiments, including expression of this Pi transporter in a yeast Pi transporter

(pho84)-mutant, indicated Michaelis–Menten kinetics with an apparent Km value of

18 mM. This value is one to two orders of magnitude higher than that predicted for

high-affinity P transporter systems of AM fungi (Schweiger and Jakobsen 1999;

Smith et al. 2001; Thomson et al. 1990). The discrepancy, however, could easily be

due to problems with heterologous gene expression, as suggested earlier (Smith

et al. 2001). Recently reported Km values for the two Pi transporters of the ECM

fungus Hebeloma cylindrosporum (4 and 55 mM) were closer to the values pre-

dicted from earlier hydroponic experiments (Tatry et al. 2009; van Tichelen and

Colpaert 2000). All other reported details on Pi transporters from different AM

fungi only refer to the so-called high-affinity transporter family, important for

uptake of Pi from the soil solution, where the Pi concentration does normally not

exceed 10 mM (Harrison 1999; Marschner 1995). The other (low-affinity) Pi
transporter system, apparently operating in germ tubes of Gigaspora margarita
(Thomson et al. 1990), has not yet been characterized at the gene level.

The described Pi transporters of both AM and ECM fungi show a high degree of

structural conservation and other similarities to the Pi transporters of other organ-

isms (Karandashov and Bucher 2005; Schachtman et al. 1998). The energetic

expenditure of this high-affinity Pi acquisition is not fully resolved, but the esti-

mates are between two and four protons per molecule of phosphate (Jennings 1996;

Leggewie et al. 1997; Rausch and Bucher 2002 and references therein), with the

proton gradient being generated by H+-ATPases (Requena et al. 2003; Smith and

Read 2008 and references therein). The other aspect of Pi uptake kinetics is the Pi
inflow per unit of hyphal biomass or hyphal surface. Previous studies indicate some

interspecies variation in both the AM and ECM fungal groups (Smith and Read

2008; van Tichelen and Colpaert 2000). This might relate to the kinetic parameters

of the different Pi transporters and their expression patterns in the fungal mycelium

in the soil. The uptake of Pi into the hyphae may further be modulated by possible

differences between the different fungal species and genotypes in the intensity of

hyphal proliferation and the dynamics of the hyphal networks.

Improved acquisition of P by mycorrhizal plants appears to be derived from

several characteristics. The mycorrhizal hyphae are capable of penetrating smaller

soil pores (5–30 mm) than the roots (>50–100 mm), thus expanding access to the

soil. In addition, due to their size, the formation of a prominent P depletion zone

around the individual hyphae is minimal. Mycorrhizal hyphae are also more

efficient at spatial exploration of the soil volume (up to 50 m hyphae g�1) as

compared to roots (up to 0.1 m roots g�1) and have a lower carbon cost per unit
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of hyphal surface as compared to the root surface (Gregory 2006; Jansa et al. 2003a,

2005; Li et al. 1991; Schnepf et al. 2008; Tinker 1975). In contrast, a poorly studied

aspect is the dynamics of the hyphal networks (de Vries et al. 2009; Fitter et al.

2004). It appears that short-lived hyphal structures, like the branched-absorbing

structures described for AM fungi from the genus Glomus, can provide a highly

flexible pathway for acquisition of P and other nutrients to the plants from the soil.

These structures have rather high turnover rates (7–35 days from initiation to death

under axenic conditions) as compared to backbone hyphal strands, which retain

cytoplasm over 3 months under axenic culture conditions (Bago et al. 1998, 2004;

de Vries et al. 2009). Hyphal turnover of AM fungi from genus Glomus, as
estimated by isotopic signature of carbon supplied to the plants and recovered in

the AM hyphae, was only about 5–6 days (Staddon et al. 2003). These results are

congruent with the time-span of the fine and short-lived hyphal structures, as

presented above, as well as with previous estimates (5–7 days) based on microscopy

of soil hyphae (Friese and Allen 1991). The rates of hyphal turnover in ECM and

ERM networks are not well known, but are probably lower than in the AM fungi.

Estimates from a carbon-flux study comparable to the study of Staddon et al. (2003)

indicated an average lifespan for ECM mycelium of about 9 days, whereas rhizo-

morphs of some ECM fungi were observed to live for a number of months (Godbold

et al. 2006 and references therein). Great levels of variability with respect to the

hyphal growth and/or turnover rates have been recognized within each mycorrhizal

type and between different fungal taxa (Downes et al. 1992; Godbold et al. 2006;

Wallander 2006). Possibly, part of this variability could be explained by the

different P acquisition strategies of the different mycorrhizal fungi. For example,

soil P mining (defined here as accessing recalcitrant P sources through solubilizing

or hydrolyzing exudates according to Lambers et al. 2008) would assume longer-

lived mycelium in the same soil patch, whereas P scavenging (defined here as

collecting the easily available P beyond the reach of roots) could more efficiently be

carried out by fungi with fast hyphal turnover, expanding rapidly into uncolonized

soil patches. This hypothesis remains to be tested experimentally within each of the

mycorrhizal types as well as between the different types.

6.2.3 Access to Recalcitrant P Forms, Weathering,
and Mineralization

Varying amounts of information are known about different mycorrhizal types and

their effects on release of P from recalcitrant forms present in soil. Many ECM fungi

have been shown to be able to release Pi from poorly soluble P sources such as

apatite. This function has been demonstrated in numerous pure culture, pot, and

microcosm studies, and was recently reviewed by Rosling (2009). The relevance of

pure culture studies has, however, been questioned because large amounts of added

organic carbon can induce production of acids at higher rates than under natural

conditions. Pot and microcosm studies are also difficult to interpret because other

144 J. Jansa et al.



microorganisms (some of them having the capacity to solubilize sorbed phosphate

and/or the capacity to produce exocellular phosphatases) are usually present in the

system (Jones and Smith 2004; Vessey 2003). These factors imply that the ECM

could potentially take up Pi primarily released by the other microbes and transfer it

to plants. In extreme cases, this could lead to measurable elevation of plant P uptake

from recalcitrant sources, even when the involved mycorrhizal fungus was incapa-

ble of solubilization of the recalcitrant P on its own. However, Smits et al. (2008)

recently demonstrated fungal-induced weathering of apatite in sterile microcosms

with Pinus sylvestris seedlings colonized by the ECM fungus Paxillus involutus.
Fungal colonization of apatite grains (Fig. 6.2) increased weathering rates threefold,

and 14C simultaneously supplied to the plant was preferentially allocated to apatite

patches colonized by the fungus. The proposed mechanism for apatite dissolution is

enhanced acidification and chelation of calcium cations from the apatite through

fungal exudation of oxalic acid. Complexation of calcium with oxalic acid would

then lead to formation of calcium oxalate crystals on the surface of the fungal

hyphae in contact with the apatite. These crystals have previously been observed

(Allen et al. 1996; Landeweert et al. 2001), as have the elevated levels of oxalic acid

in the ectomycorrhizal mats of forest soils (Griffiths et al. 1994).

This relationship is supported by the observation that apatite grains introduced

into forest soil usually become heavily colonized by ECM hyphae (Hagerberg et al.

2003; Turpault et al. 2009). Furthermore, Wallander and Thelin (2008) demon-

strated that this fungal colonization became more intense when P levels of Norway

spruce needles dropped below 1.5 mg P g�1 dry weight. This value is close to

P-limiting conditions (1.3 mg P g�1 dry weight) according to Linder (1995), sug-

gesting that carbon allocation to fungal-colonized nutrient patches is regulated by

the nutrient status of the tree. In spite of these studies, direct evidence that ECM

fungi enhance the rates of apatite weathering is still limited. For example, Turpault

et al. (2009) incubated apatite grains in mesh bags for 4 years in a beech forest in

Fig. 6.2 Apatite grains (1 mm diameter) colonized by ectomycorrhizal fungus Paxillus involutus
in sterile microcosms. Reproduced from Smits et al. (2008), with permission
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western France. Half of the bags were placed in trenched plots to which roots and

mycorrhizal hyphae had no access and the other half were placed at different depths

in soil accessible to roots and mycorrhizal hyphae. Apatite grains in untrenched

plots were heavily colonized by fungal hyphae (presumably ECM) and, in contrast

to the grains without roots, showed many weathering marks (as assessed by electron

microscopy). However, with exception of the treatment at a soil depth of 25 cm

(0.2% apatite weight loss over 4 years without mycorrhizal roots versus 0.5%weight

loss with the roots), the apatite dissolution measured as a loss of mass was seemingly

unaffected by the presence of mycorrhizal roots when compared to the trenched

plots established in the same soil. Similarly, in a study by Wallander and Thelin

(2008), apatite grains from P-limited forests did not dissolve significantly faster than

apatite grains from P-sufficient forests, based on the amount of rare earth elements

(La, Nd, Sm, Eu, Tb and Yb) from the apatite that accumulated in mycorrhizal roots

surrounding the mesh bags. Both the above studies, however, were carried out under

acidic soil conditions (pH �4.3), which can preclude strong mycorrhizal effects on

apatite solubilization through mycorrhizosphere acidification.

Although it seems indisputable that ECM fungi have the potential to release P

from phosphorus-containing minerals under laboratory conditions, the extent to

which this has an influence on field weathering rates of apatite is still the subject of

much debate (Hutchens 2009; Rosling et al. 2009; Sverdrup et al. 2002; van Scholl

et al. 2008). Uptake of elements from apatite by ECM fungi under field conditions

has been previously demonstrated (Blum et al. 2002; Hagerberg et al. 2003), but the

quantitative role of this process, operating on very long time scales (for contempo-

rary science), is difficult to estimate.

Different approaches have been used to examine the roles played by different

mycorrhizal fungi in mobilizing P (and N) from organic substrates and these have

been reviewed by Read and Perez-Moreno (2003), among others. These approaches

range from axenic systems in which the fungal hyphae are exposed to identified

model compounds, to microcosm and field studies using more natural biological

substrates. ERM fungi produce a range of organic polymer-degrading enzymes that

can attack molecules such as chitin, lignins, polyphenols, and tannins, which either

contain N or protect access to organically bound or spatially inaccessible N and P

sources (organic or inorganic). Detected enzymes include lignases, polyphenol

oxidases, laccase, and catechol oxidase, and the ability to degrade hydrolyzable

polyphenols appears to be more extensively developed in ERM than in ECM fungi

(Bending and Read 1996a, b). In addition to degrading structural components of

plant litter, the ERM fungi also produce enzymes that hydrolyze P-containing

molecules. Experiments performed under axenic conditions using DNA as a sole

P source (Leake and Miles 1996; Myers and Leake 1996) have shown that phos-

phodiesters can be used by the ERM fungi as sole P sources without the intervention

of other saprotrophs. These findings were corroborated by studies of the ERM fungi

isolated from Woollsia pungens roots (Chen et al. 1999). All four of the studied

isolates were able to utilize various organic compounds as a sole carbon and N

source, and two of the isolates were able to grow on DNA or inositol sodium

hexaphosphate as sole sources of P, with higher biomass production than
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Hymenoscyphus (now Rhizoscyphus) ericae. The relevance of the above results for
the rates of acquisition of P by the ERM fungi and associated host plants from

complex organic substrates under nonsterile soil conditions needs, in many cases, to

be refined by coupling enzymatic assays and isotope labeling, as in the N studies of

Wurzburger and Hendrick (2006, 2009).

Similar studies to those on ERM listed above have also been conducted on ECM

fungi involving “natural” substrates. In these studies, pollen grains or dead nema-

todes were added to microcosms containing mycorrhizal (Paxillus involutus) or
non-mycorrhizal Betula pendula seedlings (Perez-Moreno and Read 2001a, b).

More than 96% of the P in pollen (measured as P concentration in the pollen-

enriched soil patches) added to mycorrhizal microcosms was removed and, on

average, 25% of this was transferred to the mycorrhizal seedlings (calculated

from the system P budget, comparing mycorrhizal and non-mycorrhizal plants

and assuming no significant contribution of seed P to the plant P content). In

contrast, only 25% of the P in pollen added to non-mycorrhizal microcosms was

removed and only 7% of this ended up in the non-mycorrhizal plants, suggesting

that ECM fungal hyphae play an important role in resource capture from organic

substrates. In the study with nematodes, 65% of the P originally present in the

nematodes was removed from the site of addition and 73% of this was transferred to

the mycorrhizal B. pendula plants. In non-mycorrhizal systems, the plants gained

half as much P as the mycorrhizal systems, representing only 22% of the total

originally present in the nematodes. In earlier studies, Bending and Read (1995a, b)

examined the structure and function of the ECM fungal mycelium in relation to

nutrient mobilization from forest litter. In microcosms containing Pinus sylvestris
seedlings, colonization of organic material from the fermentation horizon by Suillus
bovinus reduced concentrations of P by 22%, but colonization by Thelephora
terrestris had no effect. Activities of nutrient-mobilizing enzymes in birch litter

colonized by Paxillus involutus were studied and phosphomonoesterase activity

increased 28–50 days but decreased again between 50 and 98 days after the initial

colonization of the organic patches by the fungal mycelia. The final levels of

activity were below those of uncolonized litter, but in these unsterile substrates it

was not possible to distinguish between the activities of mycorrhizal fungi and

those of saprotrophs. Another study addressing the utilization of inositol hexapho-

sphate by ECM fungi (Colpaert et al. 1997) demonstrated substantial extracellular

acid phosphatase activity associated with mycelia of Thelephora terrestris and

Suillus luteus that was correlated with mycelial biomass and increasing P nutrition

of the mycorrhizal plants. Phytase activity of the mycelium could not be detected,

but activity at the surface of mycorrhizal roots was higher than that at the surface of

non-mycorrhizal roots, though the relative contributions of plant roots and fungi to

hydrolysis of soluble inositol hexaphosphate were unclear. Tibbett and Sanders

(2002) have shown that colonization of willow roots by Hebeloma syrjense resulted
in substantial improvement of P capture by the plants from plant litter (8% of the

added P transferred to the shoots within 35 days in mycorrhizal plants as compared

with only 1% in the non-mycorrhizal plants). This may be due to either the short-

circuiting of the organic P re-cycling between soil and plants via mycorrhizal

6 Role of Mycorrhizal Symbioses in Phosphorus Cycling 147



hyphae, or secondarily through the effects of the ECM on other components of the

system involved in P cycling (such as bacteria, saprophytic fungi, mites, collembo-

lans etc.). In this context, it is interesting to mention an earlier study that docu-

mented efficient transfer of P from the mycelium of the saprophytic fungus

Hypholoma fasciculare to the ECM fungi Suillus variegatus or Paxillus involutus
(Lindahl et al. 1999). In this study, up to 25% of the 32P contained in the hyphae of

Hypholoma appeared in the mycorrhizal plants, whereas transfer from the mycor-

rhizal fungi to the saprophyte was at least one order of magnitude lower.

Studies of the extraradical hyphae of Glomus intraradices (Koide and Kabir

2000) have demonstrated that this AM fungus can hydrolyze organic P and transfer

it through the mycelium. The magnitude of these processes under unsterile soil

conditions, however, remains poorly quantified, and the importance of organic P

mineralization by the AM fungi themselves has been called into question by other

experiments (Joner and Jakobsen 1995; Joner and Johansen 2000). In another study,

wheat was grown in chambers composed of several compartments. These compart-

ments permitted both root and mycorrhizal hyphae growth, or, blocked root access

and allowed for only hyphal growth. The soils in different compartments were then

supplemented with large amounts of P (200 mg kg�1 soil) in inorganic or organic

forms. Control chambers without mycorrhizal fungi were also established. Elevated

phosphatase activity was observed in the root-free soil colonized by Glomus
mosseae when compared to AM-free soil, particularly upon organic P addition

(Tarafdar and Marschner 1994). Similarly designed experiments using red clover

and Glomus versiforme suggest that AM fungal colonization of a root-free soil

amended with organic P makes a significant contribution to plant uptake of P from

sources such as lecithin, RNA, and sodium phytate (Feng et al. 2003). On the other

hand, the study by Antibus et al. (1997) demonstrated that field-collected AM roots

of red maple had consistently lower levels of phosphatase activity than ECM roots

of the same plant species.

Tarafdar et al. (2001) showed that fungal (Aspergillus spp.) acid phosphatases

were more efficient than plant enzymes at mobilizing P from lecithin and phytate.

This could be interpreted, on one hand, as proof of the capacity of fungi in general

to efficiently hydrolyze organic P in the soil or, on the other hand, as a demonstra-

tion of the capacity of certain specific fungal groups (particularly the soil sapro-

phytes) to hydrolyze such substrates. It is now clear from a range of studies that

ERM and ECM fungi have the saprotrophic capacity to intervene in microbial

mobilization–immobilization cycles and to sequester both N and P from the organic

complexes formed during the decomposition of microbial, faunal, and plant

remains. In heathland and forest ecosystems, these are the dominant sources of

both N and P, and the enzymatic capacity to sequester these nutrients from complex

organic substrates is probably most highly developed in the ERM fungi (Smith and

Read 2008). The evidence for AM fungi is less clear and is complicated by the

need to distinguish between the physiological activity of the AM hyphae and that

of other fungi or bacteria that might be associated with them. Experiments by

Hodge et al. (2001) demonstrated accelerated decomposition and N uptake from

organic material associated with AM hyphae, but the potential contribution of other

148 J. Jansa et al.



soil saprotrophs was unclear. Further experiments by Leigh et al. (2009) have

shown uptake of P and N associated with patches of organic material, but again,

additional uptake of P from bone-meal and Terragreen substrate present within the

microcosms cannot be ruled out. The ambiguity here indicates the need for further

experiments investigating the potential role of mycorrhiza-associated bacteria. The

role of mycorrhizal fungal hyphae as primers of soil microbial activity has been

discussed by a number of authors (e.g., Jones et al. 2004; Talbot et al. 2008;

Toljander et al. 2007), but so far our understanding of how this regulates nutrient

acquisition and transfer within the mycorrhizosphere is limited.

6.2.4 Mycorrhizas as Compound-Specific Filters

In an overwhelming number of studies, the role of mycorrhizal symbiosis in plant

acquisition of P has been documented under a wide range of environmental condi-

tions, in different ecosystems and for different host plants (Arihara and Karasawa

1998; Cardoso and Kuyper 2006; Jansa et al. 2009 and references therein; Smith

and Read 2008 and references therein). Nevertheless, to regard mycorrhizas only as

P pumps would be utterly incorrect, particularly if considering ECM and ERM

fungi in comparison to the most abundant form of mycorrhizal symbiosis formed by

the AM fungi. In addition to their role in P nutrition, ECM, ERM and, to a lesser

extent, AM fungi are involved in acquisition of N by plants, both from inorganic

and organic sources (Finlay et al. 1992; Johansen et al. 1992; M€ader et al. 2000;
Read et al. 2004). Involvement of ECM in plant water uptake has been shown

(Allen 2007; Plamboeck et al. 2007) and the mycorrhizas are also known to

alleviate deficiencies in micronutrients such as zinc and copper. In addition, at

least some genotypes of mycorrhizal fungi have the capacity to protect their host

plants from acquisition of soil pollutants such as radiocaesium (de Boulois et al.

2008; Joner et al. 2004; Ladeyn et al. 2008) and heavy metals (Joner et al. 2000;

Martino et al. 2000; Sharples et al. 1999; Sudová et al. 2008), while maintaining the

P and/or zinc supply to the plants (Joner et al. 2004; Soares and Siqueira 2008).

6.3 Translocation of P Within the Hyphae and Its Release

to the Plants

6.3.1 Transport Within the Hyphae

The P taken up by mycorrhizal fungi from the soil solution is used to meet the

physiological demand of the fungus, with the remainder transported to the plants or

stored in the hyphae. Transport of P to the plant implies a long-distance transfer

through the hyphal network, which, in both ECM and AM fungi, is assumed to

involve polyphosphates (Bucking and Heyser 2003; Ezawa et al. 2002). The short-

chain polyphosphates, resulting from depolymerization of longer polyphosphate
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chains transferred over long distances, appear to be the immediate source of P for

the plants (Ohtomo and Saito 2005; Solaiman et al. 1999; Takanishi et al. 2009).

Rapid transfer rates of P via mycorrhizal fungal hyphae have been measured either

using radioisotope labeling or microscopy (Bago et al. 2002; Cooper and Tinker

1978; Cox et al. 1980; Nielsen et al. 2002; Rhodes and Gerdemann 1978; Timonen

et al. 1996). Together with the capacity of some ECM and ERM fungi to release P

from recalcitrant sources, this rapid transfer represents what has been referred to as

a mycorrhizal short-circuit in soil–plant P cycling, bypassing release from minerals

or organic sources by free-living soil microorganisms (Johnson et al. 2005; Pankow

et al. 1991).

6.3.2 Release of P to the Plant

The mechanics of how the P is released from the fungi to the plants has not yet been

described for any mycorrhizal type. It is also not yet known whether this process is

through passive leakage or an active transport system. It is likely that some fungi

can, to different extents, retain P in their mycelium during translocation, resulting in

partial immobilization and perhaps storage of P on the way from the soil to the

plants (Boddington and Dodd 1999; Chilvers and Harley 1980; Harley and

McCready 1981; Solaiman et al. 1999) – either as a result of slow transfer within

the hyphae or due to limited release to the plant. In either case, P cycling between

soil and plant is slowed down and the P could potentially also be released back to

soil from the fungal hyphae or transferred to other soil organisms upon hyphal death

due to soil disturbance, parasitism, or grazing. On the other hand, transitional

storage of P in the fungal mycelium may function as a buffer ensuring continuous

supply of P into long-lived plants such as trees or perennial herbs in a changing

environment (Genet et al. 2000; Lussenhop and Fogel 1999; Read 1984). Thus, in

the long run, the rapid provision of P to the host plants by fungi may not necessarily

be the most beneficial system.

The plant side of the transfer, namely the mycorrhiza-inducible Pi transporters

expressed in the close vicinity of fungal structures such as hyphal coils or

arbuscules, has already been characterized for several plant species establishing

AM symbiosis (e.g., Glassop et al. 2005; Javot et al. 2007; Nagy et al. 2005;

Paszkowski et al. 2002; Rausch et al. 2001). Similar transporters are also likely to

exist in ECM and ERM plants, but have not yet been characterized at the

molecular level.

6.3.3 Consequences of Mycorrhizal P Acquisition for
the Plants and for Maintenance of Mutualism

The efficiency of P acquisition by the mycorrhizal fungi, the temporary P immobi-

lization in the fungal biomass, and the controlled P release to the plants all have
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important consequences for plant P nutritional status and growth. Although large

improvements of plant P uptake have been reported upon mycorrhizal colonization

of the roots by certain AM fungal species, association with other fungi may yield

negative growth responses, and thus qualify the relationship as parasitic (Johnson

et al. 1997; Smith et al. 2004). The potential for fungal control of P release to the

plants points to one possible mechanism for maintaining the mycobiont diversity

and mutualistic nature of the symbiosis through diversification of the benefits of

carbon trading between the plant and the mycorrhizal fungi (Cowden and Peterson

2009; Helgason and Fitter 2009; Kiers and van der Heijden 2006).

In cases where the roots are colonized simultaneously by several species and/or

genotypes of the mycorrhizal fungi, there is some evidence for preferential carbon

distribution to more beneficial mycorrhizal symbionts (Bever et al. 2009; Fitter

2006). This preference is probably dependent upon the rates of P transfer within the

specific root cells or fragments colonized by the different fungi. This is corrobo-

rated by physiological studies that showed that the release of P from intraradical

hyphae of Gigaspora increased upon glucose addition (Solaiman and Saito 2001).

However, there is also experimental evidence that some AM fungi can gain carbon

from plants in spite of the net P gain of the host plant being very limited, such as

under P- and N-sufficient conditions (Hoeksema et al. 2010; Pearson and Jakobsen

1993; Smith et al. 2003, 2004, 2009). Additionally, the existence of mycohetero-

trophic plants, where the plants apparently receive both mineral nutrients and

carbon from the fungus (Bidartondo et al. 2002; Imhof 2009; Taylor et al. 2004),

is difficult to reconcile with the hypothesis of preferential carbon allocation to the

most beneficial fungal symbiont. Possibly, some of the processes are regulated at

the ecosystem level and not at a single plant level. This may mean that the answers

are hidden in plant community ecology, source–sink relationships and so called

“common mycorrhizal networks” interconnecting different plants (Bever 1999;

Bever et al. 2009), although little evidence is so far available about mycorrhiza-

mediated transfer of P and carbon between plants (Newman and Ritz 1986; Philip

and Simard 2008; Robinson and Fitter 1999; Selosse et al. 2006; Yao et al. 2003).

Furthermore, experimental data have recently been gathered showing a more

inconspicuous contribution of mycorrhizas to the P acquisition by the plants

without detectable plant growth or net P uptake improvements (Smith et al.

2003, 2004). These effects are, however, only seen in carefully designed radio-

isotope experiments, using non-mycorrhizal mutant genotypes, or expression ana-

lyses of fungal and plant P transporters (Burleigh and Bechmann 2002; Grace et al.

2009; Li et al. 2008; Poulsen et al. 2005; Smith et al. 2009). Results of the above

studies showed that the symbiosis may be fully functional, even if traditional

measurements of mycorrhizal “benefits” such as growth or net P uptake improve-

ments were not able to detect its contribution (Facelli et al. 2009). They also

indicate that the definition of the symbiosis, currently often implicating measurable

benefits to both partners, may need to be broadened to cover these cases of

association with no obvious “benefits” (Cavagnaro et al. 2004; Jones and Smith

2004).
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6.4 Functional Diversity of Mycorrhizas with Respect

to P Uptake

In addition to major functional differences between the different mycorrhizal types,

variation in P uptake patterns and efficiency have been recognized between species

and genotypes of both AM and the ECM fungi (Boddington and Dodd 1999;

Cairney 1999; Cavagnaro et al. 2005; Jansa et al. 2005; Munkvold et al. 2004;

Smith et al. 2003). In these studies, radioisotope labeling has proven to be a

particularly important approach (see also Frossard et al. 2011). The recorded

functional diversity among the different mycorrhizal fungi appears to be important

for understanding mycorrhizal functioning in the field. This is because roots of most

plants are colonized by a mixture of mycorrhizal fungal species, usually, but not

always, belonging to the same type (van der Heijden and Vosátka 1999; van der

Heijden et al. 1998).

It has been postulated that fungi differing in P acquisition strategies could

complement each other when sharing the same root system, resulting in greater

symbiotic benefits than those conferred by each of the fungi in isolation (Koide

2000). Although this may well be the case, direct experimental evidence for

functional complementarity in P acquisition within mycorrhizal communities is

still limited (Jansa et al. 2008; Maherali and Klironomos 2007). Better under-

standing of the components of the mycorrhizal uptake pathway in different

mycorrhizal fungi (e.g., numbers of alternative P transporters, their regulation

and expressional dynamics, dynamics of the polyphosphate pool in the fungal

hyphae) and how the functional diversity is structured within fungal communities,

will be necessary before more general conclusions can be drawn. A combination

of approaches spanning molecular biology (Burleigh et al. 2002; Grace et al.

2009; Jansa et al. 2008; Tatry et al. 2009), isotopic labeling (Jakobsen et al. 1992;

Jansa et al. 2005), carefully designed pot experiments (Maherali and Klironomos

2007; Smith et al. 2004), and modeling (Antoninka et al. 2009; Deressa and

Schenk 2008; Schnepf et al. 2008, 2011) is essential for further progress in this

area. Likewise, interactions between mycorrhizal P uptake, carbon costs, and

cycling of other nutrients such as N at the whole plant or plant community levels

must be considered for an ecologically relevant picture (Grelet et al. 2009;

Johnson et al. 2010; Smith et al. 2009).

6.5 Human Impact on the Mycorrhizal Pathway

of P Acquisition by Plants

Agricultural activities, pollution, climate change, and other anthropogenic environ-

mental influences affect mycorrhizal symbioses and their role in P acquisition by

plants. Substantial information has been accumulated on these influences over the

years; however, only a fraction is discussed here. For a more detailed overview, the
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reader is referred to other sources (Allen et al. 2003; Allison and Treseder 2008;

Drigo et al. 2008; Jansa et al. 2006).

In agricultural systems, the application of water-soluble mineral P and N ferti-

lizers usually reduces the dependency of plants on nutrient uptake via the mycor-

rhizal pathway. This forced selection may eventually promote fungi that are less

beneficial to plants or promote an abundance of plants that are less mycorrhiza-

dependent (Covacevich et al. 2007; Jansa et al. 2006; Johnson 1993). Crop breeding

efforts for high yields have been shown to inadvertently select for lower mycorrhi-

zal dependencies, probably through selection for greater dependency on mineral

fertilizer inputs (Hetrick et al. 1993; Tawaraya 2003; Zhu et al. 2001). These effects

are not limited to agricultural plants and soils as nutrients, and pollutants often

leach into natural ecosystems from agricultural fields, inappropriate waste manage-

ment, and/or industrial activities. These effects are especially pronounced in forests

and heathlands. The activity of fungi sensitive to elevated nutrient availability and

pollutants decreases, and plant species or genotypes are favored that can better

tolerate the pollution and/or depend less on nutrient acquisition via mycorrhizal

fungi (Dighton 1995; Egerton-Warburton and Allen 2000; Kieliszewska-Rokicka

1999; Rejšek 1991; Robertson et al. 2007).

Elevation of CO2 levels in the atmosphere may transiently increase the biomass

and metabolic activities of mycorrhizal fungi, such as P transfer from soil to plants,

due to a reduction of carbon limitation and through creating a greater requirement

for P and other nutrients by the plants (Alberton and Kuyper 2009; Millard et al.

2007). In a longer perspective, however, this may result in a more rapid exploitation

of soil nutrient reserves and an increased sensitivity of ecosystems to disturbance

events (Pritchard et al. 2008). Global warming and redistribution of precipitation

patterns may also change the activity of soil microorganisms in general and

mycorrhizal fungi in particular (Fitter et al. 2004), but the future prospects remain

rather blurred – usually the availability of water and not soil nutrients appears to be

the primary driver of the expected ecosystem changes (Aerts et al. 2009; Allison

and Treseder 2008; Heinemeyer et al. 2007). If water availability is not limiting the

microbial activity, decay of roots and plant debris may be accelerated by global

warming, which could in turn speed up mycorrhizal P capture from these sources

(e.g., Carleton and Read 1991) thus speeding up the P cycling. Nevertheless,

genotypic differences in temperature tolerance and acclimation between different

mycorrhizal fungi might also contribute to the variability in the observed responses

in mycorrhizal community composition and functioning to climatic changes

(Malcolm et al. 2008).

A final aspect of human activity worth mentioning here is the phenomenon of

plant invasion. It has been proposed that non-mycorrhizal alien plants, such as

Hakea spp. that form cluster roots, could gain a P-acquisition advantage in ecosys-

tems normally dominated by mycorrhizal plants (Allsopp and Holmes 2001; Sousa

et al. 2007). For alien plants like Centaurea maculosa in Northern American

grasslands, a different mode of action has been proposed: invasive plants could

tap into the existing mycorrhizal networks and divert the flux of resources, such as

P, to individuals with this ability (Batten et al. 2008; Callaway et al. 2004; Zabinski
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et al. 2002). Another scenario is that the native mycorrhizal fungi could be

suppressed by (non-mycorrhizal) alien plants (e.g., Alliaria petiolata in North

America), which would in turn result in suppression of the native plants that rely

on their (native) mycorrhizal symbionts (Callaway et al. 2008; Mitchell et al. 2006).

Although experimental evidence for these processes and their importance in the

phenomenon of ecological invasions is still equivocal, it is becoming more and

more apparent that underground processes, nutrient balances, and associated micro-

flora including mycorrhizal fungi might all be important players in plant invasions,

and thus relevant topics for further study.

6.6 Conclusions

Mycorrhizal symbioses are highly diverse in their relationships with plants and

ecosystems and are involved in different P cycling processes. Although evidence is

accumulating to suggest that some ECM fungi have the capacity to induce or

accelerate weathering of P-bearing minerals, thus affecting P inputs into the

biological P cycling within the ecosystems, these processes are still largely unquan-

tified. It is therefore unclear how important these processes are compared to the

other input pathways such as aerial deposition, sedimentation, abiotic weathering,

and anthropogenic inputs via fertilization and pollution, and how they vary amongst

different ecosystems and on different geographic and time scales (Johnson et al.

2010; Newman 1995; Smits et al. 2008). To solve these issues, precise measure-

ment of P fluxes should be continued, using radio- and stable isotope methods

(Frossard et al. 2011), as well as complementary modeling efforts and long-term

observations (Rosling 2009; Rosling et al. 2009; Schnepf et al. 2011). Soil and

environmental conditions must always be taken into account when interpreting

experimental results (e.g., little biotic effect on solubilization of apatite through

acidification should be expected for strongly acidic soil conditions). Additionally,

chemical reactivity and other relevant information (chemical composition, crystal-

linity, grain size, provenance) of compounds such as apatite used for experimental

studies should always be assessed and reported to allow strict reproducibility of

results.

The importance of mycorrhizal symbiosis in plant P uptake has been established

in hundreds of studies published over many decades (Smith and Read 2008). This

extends from traditional comparisons of small (non-mycorrhizal) and big (mycor-

rhizal) plants, where the differences in net P uptake are easily demonstrable;

through more inconspicuous cases, where improvements of net P uptake are not

always translated into improved plant growth (Jansa et al. 2005); to the extreme

cases, where net P uptake of the plant is not different between mycorrhizal and non-

mycorrhizal plants, although the mycorrhizal P uptake pathway is fully operational

(Grace et al. 2009; Smith et al. 2004, 2009).

In spite of some well-documented model cases, the mechanisms governing the

transfer of P within the common mycorrhizal networks interconnecting different
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plants, as well as the involvement of other soil microorganisms in soil–mycorrhiza-

plant P transfer are still only fragmentarily understood (Finlay 2008; Lindahl et al.

1999; Toljander et al. 2006). Extensive use of mineral P fertilizers and breeding for

high-yielding crop varieties under fertilized soil conditions has seemingly led to

selection of genotypes that are less responsive to mycorrhizal symbiosis than some

of the older cultivars (Hetrick et al. 1993). This might be of concern regarding

efficient use of natural resources in the future (Sawers et al. 2008).

Major differences in the accessibility of different soil P pools to different

mycorrhizal types explain the distribution of the different mycorrhizal types in

ecosystems: AM fungi appear to access mainly orthophosphate in the soil solution,

ECM can access both inorganic and organic P in soil, and ERM appear to be able to

access mainly the P contained in organic substrates (Read and Perez-Moreno 2003).

Direct acquisition of P from decaying plant biomass or other organic substrates via

mycorrhizal pathway effectively short-circuits the soil–plant P cycling, in which

the largest portion of P mineralization would otherwise have to be accomplished by

free-living soil decomposers before being accessed by roots or the mycorrhizal

hyphae (Carleton and Read 1991). Through efficient P recycling from organic

forms, capture of Pi from soil solution, and by improving soil mechanical stability,

mycorrhizal symbiosis has the potential to contribute substantially to reduction of P

loss through leaching and erosion (Asghari et al. 2005; Cardoso and Kuyper 2006).

On the other hand, in agricultural and other ecosystems where management

includes intentional removal of some plant products (green biomass, grains, fibers,

wood), mycorrhizal symbiosis alone cannot guarantee long-term sustainability of

production without adequate P inputs in the form of mineral or organic fertilizers,

plant residues, or products resulting from wastewater treatment or municipal waste

processing (Jansa et al. 2006; Oberson et al. 2011).
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